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The experimentally observed tensile properties (tensile strength and modulus) of short sisal

fibre-reinforced LDPE with different fibre loading have been compared with the existing

theories of reinforcement. The macroscopic behaviour of fibre-filled composites is affected

by fibre loading, orientation and length of the fibres in the continuous medium. The

interfacial adhesion between fibre and matrix also plays a major role in controlling the

mechanical properties of the fibre-filled composites. In this study, a comparison is made

between experimental data and different theoretical models. Composite models, such as

parallel and series, Hirsch, Cox, Halpin—Tsai, modified Halpin—Tsai and modified Bowyer

and Bader, have been tried to fit the experimental data.
1. Introduction
The mechanical properties of fibre-filled composites
are affected by a number of parameters such as fibre
length, fibre orientation, fibre dispersion, fibre geo-
metry and the degree of interfacial adhesion between
fibre and matrix [1—5]. In the literature, a number of
equations and theories have been developed to de-
scribe the relation between these parameters and
properties of constituent components of composites.
The efficiency of load transfer from matrix to fibre in
a composite is strongly related to the optimum mech-
anical properties of the composite.

One of the earliest theories of reinforcement de-
veloped by Cox [6] is based on shear-lag mechanism
observed in fibrous composites. According to Cox, in
shear-lag analysis, the main aspects of controlling the
properties of a composite are critical length of the fibre
and interfacial shear strength between fibre and
matrix. The critical length of the fibre, l

#
, in com-

posites is a parameter which determines the amount of
stress transferred to the fibre. That is, if the length-to-
diameter ratio is higher than the critical aspect ratio,
composites show superior properties, while for a fibre
whose aspect ratio is smaller than the critical aspect
ratio, composites show weaker properties. In Cox’s
treatment, interfacial shear strength is produced on
the surface of the fibre due to the ‘‘shear lag’’ between
fibre and matrix during the failure of the composite.
However, Cox’s shear-lag analysis has two major dis-
*Author to whom all correspondence should be addressed.

advantages. The first one is that stress amplification

0022—2461 ( 1997 Chapman & Hall
effects at the fibre ends are not taken into account, and
the second is that the matrix tensile stress possesses no
radial dependence.

Piggot modified Cox’s theory by introducing a new
theory which combines plastic deformation at the
fibre ends with elastic deformation towards the centre
of the fibre during tensile loading [7].

It was also reported that the strength of short fibre-
reinforced thermoplastics and thermosets are highly
dependent on two factors, such as ‘‘fibre orientation
factor’’ and ‘‘fibre length factor’’ which contribute to
the strength of the composite [8]. In another study,
Piggot developed an equation for calculating the min-
imum volume fraction of fibres for a good reinforce-
ment [9].

Termonia [10] presented a computer model to
study the effect of fibre characteristics on the mechan-
ical properties of short fibre-reinforced composites.
Their studies revealed that the effect of fibre orienta-
tion on modulus and tensile strength of the composite
is very weak and an optimum fibre aspect ratio is
essential for effective reinforcement. They modelled
the whole composite material as a three-dimensional
lattice of bonds having different elastic constants for
the fibre and for the matrix. They also found that in
composites, a micro-failure mechanism originates at
the fibre ends and propagates along the fibre—matrix
interface with no fibre breaking. Termonia [10] cal-
culated a value for the reinforcement efficiency factor

based on their observations in that study.
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Monette et al. [11] suggested a computer modelling
for the theoretical understanding of the concept of
critical length in composites. The effects of interface
and matrix properties on critical aspect ratio was also
studied by them. They found that critical aspect ratio
is related to interfacial shear strength and fibre
strength only and not to matrix properties. They fur-
ther showed that under certain circumstances, matrix
viscosity and strain rate can influence the critical
aspect ratio. Karam [12] studied the effect of fibre
volume fraction on the strength properties of short
fibre-reinforced cement. He proposed a modification
to the existing model in order to calculate the strength
of the composites. The modification is based on the
reduction of interfacial surfaces due to fibre—fibre and
fibre—void interactions.

2. Theory
Several theories have been proposed to model the
tensile properties of composite material in terms of
different parameters [13—16]. These theories can be
classified into two groups, based on the nature of the
matrix and the reinforcements. These are the theories
of reinforcements in a non-rigid matrix and those in
a rigid matrix.

2.1. Theories of rigid particulate
reinforcement in non-rigid polymer
matrices

2.1.1. Einstein and Guth equations
These equations are mainly used for the theoretical
calculation of the properties of particulate (spherical)-
reinforced polymer composites [17, 18].

According to the Einstein equation
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#
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are the Young’s modulus of com-
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is the particle vol-
ume fraction. Guth derived an equation [18]
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This equation is further related to the tensile strength,
¹
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, of the composite
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where ¹
.

is the tensile strength of the matrix.

2.1.2. Modified Guth equation
Cohan [19] introduced a particle shape factor, S, for
non-spherical particles, where S is defined as the ratio
of the length-to-width of particles.

The modified Guth relation is given by
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2.1.3. Modified Kerner equation
Young’s modulus of spherically shaped particulate-

filled polymer composites is given by Kerner’s
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where »
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is the matrix volume fraction, r
.

is the
Poisson’s ratio of the matrix.

Nielsen modified Kerner’s equation by introducing
a function called the particle packing factor, BF [21]
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A accounts for the factors such as geometry of the filler
and Poisson’s ratio of the matrix. B accounts for the
relative moduli of filler and matrix
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where M
1

and M
.

are the Young’s moduli of partic-
ulate filler and matrix, respectively.

Equations 1—7 are mainly applicable only in the
field of particulate-reinforced polymers, especially in
non-rigid polymer matrices.

2.2. The theories of rigid reinforcement
(particulate and fibrous) in a rigid
matrix

These theories can be successfully applied in the sys-
tems of both particulate and fibrous reinforcement.

2.2.1. Parallel and series model
According to these models, Young’s modulus and
tensile strength are calculated using the following
equations.

Parallel model
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Series model
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where M
#
, M

.
and M

&
are the Young’s moduli of

composite, matrix and fibre, respectively. ¹
#
, ¹

.
and

¹
&

are the tensile strength of the composite, matrix
and fibre, respectively.

In the case of a parallel model, it is assumed that
isostrain conditions exist for both matrix and
fibre, whereas in the case of a series model, stress
was assumed to be uniform in both matrix and
fibre [22].

2.2.2. Hirsch’s model
Hirsch’s model is a combination of parallel and series

models [23]. This model can be represented by Fig. 1.



Figure 1 A schematic representation of Hirsch’s model.

According to this model, Young’s modulus and tensile
strength are calculated using the following equations
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The parameter, x, is explained in Section 4.

2.2.3. The Halpin—Tsai model
This model has been used by several researchers in the
system of polymeric blends which consist of continu-
ous and discontinuous phases [24, 25]. However, it
was reported that this model was also useful in deter-
mining the properties of composites that contain dis-
continuous fibres oriented in the loading direction
[26—28].

According to Halpin—Tsai, Young’s modulus, M
#
,

of the composite is given by
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where A is the measure of fibre geometry, fibre distri-
bution and fibre loading conditions.

2.2.4. Modified Halpin—Tsai equation
Nielson modified the Halpin—Tsai equation by includ-
ing the maximum packing fraction, /

.!9
, of the rein-

forcement [29]. According to this
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g is given by Equations 16 and 17, and accounts for
the relative moduli of fibre and matrix, respectively.
w depends upon the particle packing fraction. The
value of A is determined from the Einstein coefficient,
K, reported in a previous study [30]. /

.!9
is the

maximum packing fraction, and has a value 0.785 for
square arrangement of fibres, 0.907 for hexagonal ar-
ray of fibres and 0.82 for random packing of fibres.

2.2.5. Cox model
According to Cox’s theory, longitudinal Young’s
modulus, M

#
, is given by the equation [6]
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where r is the radius of the fibre, G
.

the shear modulus
of matrix, R the centre-to-centre distance of the fibres,
and A

&
the area of the fibre.

For hexagonally packed fibres
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For square packed fibres
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According to Cox’s model, tensile strength, ¹
#
, is

given by [6]
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b is given by the Equation 24.

2.2.6. Modified Bowyer and Bader’s model
According to Bowyer and Bader’s model, the tensile
strength of short fibre-reinforced thermoplastic com-
posites is the sum of contributions from subcritical
and supercritical fibres and that from the matrix [31].
Tensile strength is given by
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where K
1

is the fibre orientation factor. Depending on
fibre orientations, K

1
also changes [8]. K

2
is the fibre

length factor.
For fibres with l'l

#
.

K
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TABLE I Physical and mechanical properties of low-density polyethylene (LDPE-Indothene 16MA 400)

Melt flow index Density (g cm~3) Tensile strength Elongation at Modulus of Vicat softening Crystalline melting
(g/10 min.) at break (MPa) break (%) elasticity (MPa) point (°C) point (°C)
40 0.916 9 200 140 85 104
For fibres with l(l
#
.

K
2

" l/2l
#

(30)

where l is the length of the fibre and l
#

is the critical
length of the fibre. Young’s modulus also can be cal-
culated using the same equation
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The main purpose of this study was to correlate the
experimental tensile properties of short sisal fibre-
reinforced low-density polyethylene with theoretical
values, calculated by various theoretical models. It
was found that some of the models show a good
agreement with experimental values. The models
clearly indicate that the parameters such as fibre ori-
entation, fibre length, fibre loading, fibre dispersion
and interfacial shear strength between fibre and
matrix play a major role in contributing to the tensile
properties of short fibre-reinforced polymer com-
posites. The limitation of these models was also con-
sidered in this study.

3. Experimental procedure
Sisal fibre was obtained from local sources. LDPE,
graded as Indothene 16 MA 400, was supplied by
Indian Petrochemical Corporation Ltd, Baroda, In-
dia. The properties of sisal and LDPE are listed in
Tables I and II.

Sisal/LDPE composites were prepared by the solu-
tion mixing technique. Fibre was added to a viscous
slurry of polyethylene in toluene which was prepared
by adding toluene to a melt of the polymer. The
mixing was carried out manually in a stainless steel
beaker using a stainless steel stirrer. The temperature
was maintained at 110 °C during mixing for about
10 min. The mix was then transferred into a flat tray as
lumps and kept in a vacuum oven at 70 °C for 2 h to
remove the solvent. Composites containing 10%,
20%, and 30% by weight of fibre were prepared using
fibres of length in the range 2—10 mm. The mix is then
extruded through a ram-type hand-operated injec-
tion-moulding machine at a temperature of
125$3 °C. For the preparation of longitudinally and
transversally oriented composites, the extrudates hav-
ing a diameter of 4 mm were collected and aligned in
a leaky mould [32]. They were then compression
moulded at pressure of about 8 MPa and at a temper-
ature of 125$3 °C. The composites so obtained were
removed after cooling the mould below 50 °C. Rectan-
gular specimens of size 120 mm]20.5 mm]2.5 mm
were cut from above composites for further testing.
Randomly oriented composite sheets (120 mm]
12.5 mm]3 mm) were prepared by standard injection
moulding of the mix using a ram-type hand-injection

moulding machine. Fig. 2. shows the optical photo-
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TABLE II Physical and mechanical properties of sisal fibre

Density Tensile Young’s Elongation Diameter
(g cm~3) strength modulus at break (lm)

(GPa) (GPa) (%)

1.41 0.4—0.7 9—20 5—14 100—300

Figure 2 Optical photographs of the composites showing the differ-
ent orientation of fibres: (a) parallel and (b) random. ]60.

graphs of different orientations of the fibre in the
matrix. Tensile testing of the composites was carried
out using an Instron Universal Testing Machine
model 1190 at a crosshead speed of 200 mmmin~1

and gauge length of 50 mm. At least five specimens
were tested for each set of samples and the mean
values are reported.

4. Results and discussion
Composites containing 2—10 mm length fibres were
analysed in this study. However, it was found that
composites with incorporated 6 mm fibre lengths
showed maximum tensile strength [33]. Therefore,
6 mm fibre length was used in this study. Fig. 3 shows
a comparison of the variation in theoretical and ex-
perimental tensile strength values of longitudinally

oriented composites with volume fraction of fibres.



Figure 3 Variation of experimental and theoretical tensile strength
values of longitudinally oriented composites as a function of volume
fraction of fibres: (m) Experimental, (]11

) parallel, (j) series, (N)
Hirsch, (]) Halpin—Tsai, (.) modified H—T, (n) Cox, (M) modified
Bowyer and Bader.

Theoretical values were calculated using the various
models as shown in the figure. It can be seen that, in all
cases, tensile strength increases regularly with increase
in the volume fraction of fibres. A good correlation
between the theoretically and experimentally observed
tensile strength was seen in those models predicted
using Hirsch and modified Bowyer and Bader equa-
tions. The curves showing parallel and series models
agree the least with the experimental values. Usually,
parallel and series models are used to describe the
strength of continuous fibre-reinforced ploymeric
composites. The assumption of either uniform stress
or uniform strain is clearly an over simplification in
this case. The stress-transfer mechanism of continuous
fibre-reinforced composite is different from that of
short-fibre composites. In the case of short-fibre com-
posites, the stress transfer depends largely on fibre
orientation, stress concentration at the fibre ends,
critical fibre length, etc. It can be seen from Fig. 1 that,
at low volume fraction of the fibres, series and parallel
models show a marginal agreement with experimental
values. This can be attributed to the fact that, at low
volume fraction of the fibre, uniform stress or strain in
the composite is achieved as a result of the better
distribution of load through the well-dispersed fibres
in the matrix. But at high volume fraction, some of the
fibre will be agglomerated in the matrix. Hence the
applied load will be distributed unevenly between
non-aggregated and aggregated fibres.

The Hirsch model is, in fact, a combination of
parallel and series models. The agreement between
theoretical and experimental values has been found
only when the value of x in Equation 13 is 0.4 for
longitudinally oriented composites. From this
equation, it was found that x is a parameter which
determines the stress transfer between fibre and

matrix. It is assumed that the controlling factors for
Figure 4 Variation of experimental and theoretical Young’s
modulus values of longitudinally oriented composites as a function

the value of x are mainly fibre orientation, fibre length
and stress amplification effect at the fibre ends. Thus it
is seen that the value of x is a determining factor
in describing the real behaviour of short-fibre
composites.

The modified Bowyer and Bader model as given in
Equation 28, deals with two factors, such as fibre
orientation factor, K

1
, and fibre length factor, K

2
. It

was reported that the value of K
1

is 1 for aligned short
fibre-reinforced composites in the applied stress direc-
tion [8]. The value of K

2
can be calculated using

either Equation 29 or 30, because when l"l
#
, both

equations give the same value. The values of K
1

and
K

2
were found to be 1 and 0.5 in good agreement with

experimental values.
Cox’s model in Fig. 3 is applicable only for the

system in which the fibre and matrix remain elastic in
their mechanical response, where the fibre—matrix in-
terface is perfect and where no axial load is transmit-
ted through the fibre ends [6]. Cox’s model shows
a reasonable agreement in tensile strength values espe-
cially at low volume fraction of the fibre with the
experimental values.

The curves showing the tensile strength values from
the Halpin—Tsai (H—T) and the modified H—T equa-
tion given by Nielson, are depicted in Fig. 3. It can be
seen that in both cases, tensile strength values are
approximately the same. This clearly reveals that in-
troduction of a factor which determines the maximum
packing fraction of fibres has little effect on tensile
strength. In this model, the tensile strength values
were calculated using Equation 15. The value / was
taken by assuming that fibres are arranged in random-
ly oriented close packed manner. The values of g, w,
A and K are calculated using Equations 17, 20, 21 and
22, respectively.

Fig. 4 shows a comparison of the variation in
experimental and theoretical Young’s modulus of
of volume fraction of fibres. For key, see Fig. 3.
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longitudinally oriented composites with the volume
fraction of fibres. It was observed that a very reason-
able correlation exist between theoretical and experi-
mental values in most of the models except series and
parallel models. A good agreement is seen in the case
of Halpin—Tsai, and modified Bowyer and Bader
models. In the case of the Halpin—Tsai and modified
H—T models, a good agreement between experimental
and theoretical Young’s modulus values was observed
as compared to the fit of the experimental and theoret-
ical tensile strength values. Fig. 5 shows a comparison
of the variation in theoretical as well as experimental
Young’s modulus values of randomly oriented com-
posites with volume fraction of fibres. The Hirsch and
modified Bowyer and Bader models are used for the
calculation of theoretical values. Both models par-
tially agree with the experimental values. All other
models used in the study are not applicable in the
system of randomly oriented composites. In the case
of Hirsch’s model, tensile strength and Young’s
modulus values were calculated using Equations 12
and 13. In this case, agreement between experimental
and theoretical values has been found only when the
value of x in Equations 12 and 13 is 0.1 for randomly
oriented composites. The value of x has same meaning
as in the case of longitudinally oriented composites. In
the case of the modified Bowyer and Bader model,
tensile strength and Young’s modulus values were
calculated using Equations 28 and 31. The value of K

2
in the equation is the same for both longitudinally and
randomly oriented composites, but fibre orientation
factor, K

1
, is different for randomly oriented com-

posites. In this case, the value of K
1
, for good agree-

ment between theoretical and experimental values,
was found to be 0.2, because it has already been
reported that the value of K

1
for fibres arranged in the

random fashion is 0.2 [8].
From Figs 3—5, it is clearly observed that, in gen-

eral, tensile properties of both longitudinally and ran-
domly oriented composites show a reasonable agree-
ment with all the models at low volume fraction of
fibres. This may be due to proper orientation of fibres
and uniform distribution of applied load as a result of
well-dispersed fibres in the matrix at low volume frac-
tion of the fibres.

Fig. 6 shows a comparison of the variation in theor-
etical and experimental tensile properties of randomly
oriented composites as a function of fibre length. The
modified Bowyer and Bader model is used for the
calculation of tensile properties. The critical length of
the fibre was found to be 6 mm from the earlier study
[33]. Hence the other lengths of 2 and 10 mm are
taken as subcritical and supercritical lengths, respec-
tively. The 2, 6 and 10 mm fibre composites were
prepared at 10, 20 and 30 vol% fibres. Tensile proper-
ties were calculated using Equations 28 and 31. The
value of K

2
in Equations 28 and 31 is different for

different fibre lengths. For 2 and 10 mm fibres, the
values of K

2
were calculated using Equations 30 and

29, respectively. But any of the above equations can be
used for calculating K

2
in the case of 6 mm fibres,

because when l"l both equations give the same

#

values.
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Figure 5 Variation of experimental and theoretical tensile proper-
ties of randomly oriented composites as a function of volume
fraction of fibres. (——) Strength, (— — —) modulus; (m) experimental,
(N) Hirsch, (M) modified Bowyer and Bader.

Figure 6 Variation of experimental and theoretical tensile proper-
ties of randomly oriented composites as a function of fibre length.
For key, see Fig. 5.

It can be seen from Fig. 6 that at 6 mm fibre length,
there is a good agreement between theoretical and
experimental values in the case of tensile strength and
Young’s modulus values. This clearly indicates that at
critical fibre length, composites show maximum prop-
erties.

The limitation of the models used in this study
mainly depends on different factors. The chance of the
formation of microvoids between fibre and matrix
during the preparation of composites greatly influen-
ces the tensile properties. This factor is not accounted
for in any of the models used in this study. In all

models used here, it is assumed that the fibres are



Figure 7 Scanning electron micrograph of the surface of the sisal
fibre.

cylindrically shaped. However, the actual shape of the
sisal fibre is not perfectly cylindrical due to surface
irregularities. Fig. 7 is clear evidence for this fact. The
non-uniform shape of the sisal also accounts for the
deviation of the tensile properties from the theoretical
predictions.

5. Conclusion
A comparison between experimental results and the
prediction from theory of the tensile properties (tensile
strength and Young’s modulus) of short sisal fibre-
reinforced low-density polyethylene composites has
been presented. The models selected were series and
parallel, Hirsch, Halpin—Tsai, modified Halpin—Tsai,
Cox, and modified Bowyer and Bader models. Tensile
properties of longitudinal and randomly oriented
composites were presented as a function of volume
fraction of the fibres. All models were applied in the
system of longitudinally oriented composites, but the
Hirsch and modified Bowyer and Bader equations
were applied in the case of randomly oriented com-
posites. All models except the series and parallel
model show reasonable agreement with experimental
tensile properties of longitudinally oriented com-
posites, especially at low volume fraction of the fibre.
Among the various models, the Hirsch and modified
Bowyer and Bader equations show very good correla-
tion with experimental results. Hirsch and Bowyer
and Bader models also show good correlation with
experimental results of randomly oriented composites.
The effect of fibre length on tensile properties was also
analysed in this study. The Bowyer and Bader model
revealed that the critical length plays a major role in
contributing to the tensile properties of short fibre-
reinforced polymer composites. All theoretical models
used in this study clearly indicate that tensile proper-
ties of short fibre-reinforced composites strongly de-
pend on fibre length, fibre loading fibre dispersion,

fibre orientation and fibre—matrix interfacial bond
strength. Parameters concerning the surface irregular-
ities of sisal fibre and microvoids formed between fibre
and matrix are not accounted for in this study.
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